

# Env Workshop Nov 2014 – DAB Topics

## All Seasons CLIMATE COMFORT

Heating

Air Conditioning

Applied Systems

Refrigeration



TOP SECRET SECRET INTERNAL USE ONLY PUBLIC



### 1) Phase out R22

Regulation in Belgium quite complicated with 3 different Regions:

In the 3 Regions: use of R22 prohibit from 01/01/2015

But with some differences:

- Flemish Region: from 01/01/2015, R22 units may still operate up to the moment a problem occurs on refrigerant circuit (than: recovery R22 + unit change or drop in)
- Walloon Region: from 01/01/2015, R22 units may still operate up to the moment a problem occurs on refrigerant circuit (than: recovery R22 + unit change or drop in) and after 30/05/2015, units may operate only if no leakage established in 2013 and 2014 (reference = logbook)
- Brussels Region: from 01/01/2015, R22 units may NOT more operate → solutions : recovery R22 + unit change or drop in

Opportunity: The Phase out of R22 has to boost the units replacement

Barrier: Drop in R22 (by R422) / COP lower, no support DENV
Noise regulation more strict compare to several years ago
Not always watercooled chillers (screw inverter) available
A lot of units are oversize due to heat gains reduction in buildings

(insulation works, less internal load, ...)



## 2) Phase out R22

Replacement of R22 units = a lot of scrap units brought to the market

Opportunity: increase of amount of units recycled to support the DAB recycling plan (119,3 ton for 2014)

Barrier: price of scrap metal (copper, aluminium, steel, ...)
hard competition of scrap merchants
no control of the authorities (no manpower) concerning:

- the recovery of refrigerant on scrap unts
- the certification of scrap merchants



## 3) Subsidies for low energy consumption systems

Subsidies are given in the different Regions to promote the low energy products: heat pump units, solar panels, photovolatic panels, ...

**Trend**: specifical certification for the Company and for the engineers to ensure the quality of the installation (QUEST & CONSTRUCTION QUALITY and RESCert)

GDM:

Opportunity: Subsidies can be a good sales support of heatpump units, Daikin Altherma units, Rotex products, ... towards end users

**Barriers**: No long term vision on the subsidies (no real continuity)

Differences between the 3 Regions



## 4) Energy performance of buildings

E-value or Ew-level =

building primary energy

K-level = bulding thermal

consumption per year

(kWh/m²/year)

insulation level

## New build - market

#### **EPBD** (Energy Performence of Building Directive)

## **Current proposals from real estate promoters**

#### **EPBD** (Flanders):

2014/2015: E60 - K40 + Renewable energy

2016/2017: E50 – K40 2018/2019: E40 – K40

2020: E35 – K40 2021: E30 – K40

#### Example:

2011: 6% HP

Gas boiler + (PV (solar)) cheapest option

E60/E54 mostly reached by isolation level (+- E45 possible) Increasing focus on HP (E50: 33%, E40: 50%, <E20: 75%)

2011: 6% solar

No relation with E-level

#### EPB (Wallonia):

2014: Ew80 – K35 Increasing focus on HP

Gas boiler (no PV or soalr) SHW: small (integrated) boiler

#### EPB (Brussels):

2014: E70 - K40

2015: Eprimaire < 45 kWh/m²/yr

#### Matexi – E46:

WHCB + rad/UFH chauff sol Ventilation D (cross ventilation)

#### Hyboma – E30 (BEN):

K25 - K30

WHCB + radiators

PV

Ventilation C

#### Revive – E30 (BEN):

K < K20

HP + UFH underfloor heatong Ventilation D

Revive - E40:

K < K30

HP + UFH

Ventilation D

#### Huyzentruyt – E40:

K30

WHCB + rad/UFH

PV

Ventilation C+

PV: Photovoltaic
HP = Heat Pump
SHW = solar hot water
WHCB = wall gas boiler
UFH = under floor heating
Ventilation C =
mechanical extraction
Ventilation D = cross flow



## **EPBD** simulation

| Naam                                 | U/R      | К              | E           | NE          | Ventil.  | Oververh. | HE       |
|--------------------------------------|----------|----------------|-------------|-------------|----------|-----------|----------|
| Rotex Gaswandketel rad               | <b>②</b> | <b>⊘</b> 31    | <b>⋈</b> 65 | <b>Ø</b> 51 | <b>②</b> | <b>Ø</b>  | 8        |
| Rotex Gaswandketel rad + Solaris x 4 | <b>Ø</b> | ₹ 31           | <b>2</b> 56 | <b>Ø</b> 51 | <b>Ø</b> | <b>Ø</b>  | <b>Ø</b> |
| Rotex Gaswandketel vvw               | <b>⊘</b> | <b>⊘</b> 31    | <b>⊗</b> 63 | <b>Ø</b> 51 | <b>Ø</b> | <b>Ø</b>  | 8        |
| Rotex Gaswandketel vvw + Solaris x 4 | <u>@</u> | <b>231</b><br> | <b>2</b> 55 | <b>2</b> 51 | <u>@</u> | <u>@</u>  | <u>@</u> |
| Daikin Integrated                    | <b>⊘</b> |                | <b>34</b>   | <b>Ø</b> 51 | <b>⊘</b> | <b>Ø</b>  | <b>②</b> |
| Daikin Wall mounted                  | <b>Ø</b> | ☑ 31           | <b>4</b>    | <b>Ø</b> 51 | <b>Ø</b> | <b>Ø</b>  | <b>Ø</b> |
| Dailes Atomobioc                     | <b>Ø</b> | ☑ 31           | <b>2</b> 59 | <b>Ø</b> 51 | <b>Ø</b> | <b>Ø</b>  | <b>Ø</b> |
| Rotex HPSU compact (no BUH)          | <b>⊘</b> | ☑ 31           | ₹ 46        | <b>Ø</b> 51 | <b>Ø</b> | <b>Ø</b>  | 8        |
| Daikin GSHP                          | <b>⊘</b> | ☑ 31           | 50          | <b>Ø</b> 51 | <b>②</b> | <b>Ø</b>  | <b>Ø</b> |

#### E-level becomes 50 in CY 2016

- Daikin integrated with K 31 is not enough to cope E50 => because of electrical heater
- Rotex HPSU Compact is enough to get E50 => no electrical heater

#### E-level becomes 40 in CY 2018

- Rotex HPSU Compact + solaris will come under E 40
- Altherma Integrated will request additional measures, lower K level, othere renewable energy applications

Name:





### **EPBD** simulation

| Naam                                 | U/R      | К           | Е           | NE          | Ventil.  | Oververh. | HE       |
|--------------------------------------|----------|-------------|-------------|-------------|----------|-----------|----------|
| Rotex Gaswandketel rad               | <b>Ø</b> |             | <b>⊗</b> 65 | <b>Ø</b> 51 | <b>Ø</b> | <b>Ø</b>  | 8        |
| Rotex Gaswandketel rad + Solaris x 4 | <b>⊘</b> |             | < 56 €      | <b>⊘</b> 51 | <b>②</b> | <b>⊘</b>  | <b>⊘</b> |
| Rotex Gaswandketel vvw               | <b>⊘</b> |             | <b>⊗</b> 63 | <b>⊘</b> 51 | <b>②</b> | <b>②</b>  | 8        |
| Rotex Gaswandketel vvw + Solaris x 4 | <u>@</u> | <u></u> 31  | <u></u> 55  | <u></u> 51  | <u>@</u> | <u>@</u>  | <u>@</u> |
| Daikin Integrated                    | <b>②</b> |             | √ 54        | <b>⊘</b> 51 | <b>Ø</b> | <b>Ø</b>  | <b>Ø</b> |
| Daikin Wall mounted                  | <b>②</b> |             |             | <b>⊘</b> 51 | <b>Ø</b> | <b>Ø</b>  | <b>Ø</b> |
| Daikin Monobloc                      | <b>⊘</b> |             |             | <b>⊘</b> 51 | <b>Ø</b> | <b>Ø</b>  | <b>Ø</b> |
| Rotex HPSU compact (no BUH)          | <b>Ø</b> | <b>⊘</b> 31 |             | <b>Ø</b> 51 | <b>Ø</b> | <b>Ø</b>  | 8        |
| Daikin GSHP                          | <b>Ø</b> | <b>⊘</b> 31 |             | <b>Ø</b> 51 | <b>Ø</b> | <b>Ø</b>  | <b>Ø</b> |

#### HE = Renewable energy ?

- Flemish request
- For heat pump SPF 4 needed (calculated via own methodology, is an SCOP, not conform Ecodesign)
  - Air/air  $\Rightarrow$  4,01 at +2° C outdoor /20° C indoor
  - Air/water => 3,71 at +2° C outdoor / 35° C water temp with floorheating will result in SPF 4

Name:

SPF = seasonal performance factor

SCOP = seasonal coefficient of performance